269 research outputs found

    A Pixel Vertex Tracker for the TESLA Detector

    Get PDF
    In order to fully exploit the physics potential of a e+e- linear collider, such as TESLA, a Vertex Tracker providing high resolution track reconstruction is required. Hybrid Silicon pixel sensors are an attractive sensor technology option due to their read-out speed and radiation hardness, favoured in the high rate TESLA environment, but have been so far limited by the achievable single point space resolution. A novel layout of pixel detectors with interleaved cells to improve their spatial resolution is introduced and the results of the characterisation of a first set of test structures are discussed. In this note, a conceptual design of the TESLA Vertex Tracker, based on hybrid pixel sensors is presentedComment: 20 pages, 11 figure

    Chiral non-linear sigma-models as models for topological superconductivity

    Full text link
    We study the mechanism of topological superconductivity in a hierarchical chain of chiral non-linear sigma-models (models of current algebra) in one, two, and three spatial dimensions. The models have roots in the 1D Peierls-Frohlich model and illustrate how the 1D Frohlich's ideal conductivity extends to a genuine superconductivity in dimensions higher than one. The mechanism is based on the fact that a point-like topological soliton carries an electric charge. We discuss a flux quantization mechanism and show that it is essentially a generalization of the persistent current phenomenon, known in quantum wires. We also discuss why the superconducting state is stable in the presence of a weak disorder.Comment: 5 pages, revtex, no figure

    Microcrystalline Bi2ZnB2O7-polymer composites with silver nanoparticles as materials for laser operated devices

    Get PDF
    A novel type of composite for optoelectronic which is operated by second harmonic generation in the Bi2ZnB2O7 crystallites (with sizes varying within 1–30 μm) and Ag nanoparticles (NP) embedded in PMMA polymer composites is proposed. The substantial influence of the Ag NP on the bicolor induced second harmonic generation was established. The phototreatment was performed by bicolor beams of nanosecond Nd:YAG laser (1,064/532 nm) at angles between the fundamental and photoinducing beams varying within the 19°–21° range. The studies of the corresponding dependences of the SHG during illumination by the two coherent beams at 1,064/532 nm showed a maximal enhancement of the output SHG for the Ag NP average sizes equal to about 40 nm. The role of the excited plasmons may be here crucial. Additionally the time shift between the fundamental and the doubled frequency beam maxima was found, which shows strong sensitivity to illumination. The established time shift is sensitive to the pumping power

    High resolution pixel detectors for e+e- linear colliders

    Get PDF
    The physics goals at the future e+e- linear collider require high performance vertexing and impact parameter resolution. Two possible technologies for the vertex detector of an experimental apparatus are outlined in the paper: an evolution of the Hybrid Pixel Sensors already used in high energy physics experiments and a new detector concept based on the monolithic CMOS sensors.Comment: 8 pages, to appear on the Proceedings of the International Workshop on Linear Colliders LCWS99, Sitges (Spain), April 28 - May 5, 199

    beta-BaTeMo2O9 microcrystals as promising optically operated materials

    Get PDF
    Studies of optical second harmonic generation (SHG) at fundamental wavelength of 1064 nm under photoinducing treatment of monoclinic piezoelectric beta-BaTeMo2O9 (beta-BTMO) were done. Continuous wave (CW) lasers generating at 808 and 1040 nm were used as photoinducing sources. The investigations were performed for the beta-BTMO microcrystalline powder samples with grain sizes varying within the 25-300 mu m range. We showed that depending on the microcrystallites size, the photoinduced changes of the SHG were substantially different depending on number of defects which were controlled by positron annihilation. The photoinduced SHG efficiency was substantially higher for more defective crystallites. The processes are completely reversible; however, their photoinduced time kinetics is very sensitive to the wavelength of the photoinducing CW laser beam. The possible reasons for the observed differences are discussed within a framework of intrinsic defect trapping levels and their interactions with phonon subsystem

    High Resolution Hybrid Pixel Sensors for the e+e- TESLA Linear Collider Vertex Tracker

    Get PDF
    In order to fully exploit the physics potential of a future high energy e+e- linear collider, a Vertex Tracker, providing high resolution track reconstruction, is required. Hybrid Silicon pixel sensors are an attractive option, for the sensor technology, due to their read-out speed and radiation hardness, favoured in the high rate environment of the TESLA e+e- linear collider design but have been so far limited by the achievable single point space resolution. In this paper, a conceptual design of the TESLA Vertex Tracker, based on a novel layout of hybrid pixel sensors with interleaved cells to improve their spatial resolution, is presented.Comment: 12 pages, 5 figures, to appear in the Proceedings of the Vertex99 Workshop, Texel (The Netherlands), June 199

    Theoretical issues of small xx physics

    Full text link
    The perturbative QCD predictions concerning deep inelastic scattering at low xx are summarized. The theoretical framework based on the leading log 1/x1/x resummation and ktk_t factorization theorem is described and some recent developments concerning the BFKL equation and its generalization are discussed. The QCD expectations concerning the small xx behaviour of the spin dependent structure function g1(x,Q2)g_1(x,Q^2) are briefly summarized and the importance of the double logarithmic terms which sum contributions containing the leading powers of αsln2(1/x)\alpha_s ln^2(1/x) is emphasised. The role of studying final states in deep inelastic scattering for revealing the details of the underlying dynamics at low xx is pointed out and some dedicated measurements, like deep inelastic scattering accompanied by an energetic jet, the measurement of the transverse energy flow etc., are briefly discussed.Comment: 17 pages, LATEX, 7 uuencoded eps figures include

    Low-energy interaction of composite spin-half systems with scalar and vector fields

    Get PDF
    We consider a composite spin-half particle moving in spatially-varying scalar and vector fields. The vector field is assumed to couple to a conserved charge, but no assumption is made about either the structure of the composite or its coupling to the scalar field. A general form for the piece of the spin-orbit interaction of the composite with the scalar and vector fields which is first-order in momentum transfer Q{\bf Q} and second-order in the fields is derived.Comment: 10 pages, RevTe

    QED in strong, finite-flux magnetic fields

    Full text link
    Lower bounds are placed on the fermionic determinants of Euclidean quantum electrodynamics in two and four dimensions in the presence of a smooth, finite-flux, static, unidirectional magnetic field B(r)=(0,0,B(r))B(r) =(0,0,B(r)), where B(r)≥0B(r) \geq 0 or B(r)≤0B(r) \leq 0, and rr is a point in the xy-plane.Comment: 10 pages, postscript (in uuencoded compressed tar file

    A unified BFKL and GLAP description of F2F_2 data

    Full text link
    We argue that the use of the universal unintegrated gluon distribution and the kTk_T (or high energy) factorization theorem provides the natural framework for describing observables at small x. We introduce a coupled pair of evolution equations for the unintegrated gluon distribution and the sea quark distribution which incorporate both the resummed leading ln(1/x)ln (1/x) BFKL contributions and the resummed leading ln(Q2)ln (Q^2) GLAP contributions. We solve these unified equations in the perturbative QCD domain using simple parametic forms of the nonperturbative part of the integrated distributions. With only two (physically motivated) input parameters we find that this kTk_T factorization approach gives an excellent description of the measurements of F2(x,Q2)F_2 (x,Q^2) at HERA. In this way the unified evolution equations allow us to determine the gluon and sea quark distributions and, moreover, to see the x domain where the resummed ln(1/x)ln (1/x) effects become significant. We use kTk_T factorization to predict the longitudinal structure function FL(x,Q2)F_L (x,Q^2) and the charm component of F2(x,Q2)F_2 (x,Q^2).Comment: 25 pages, LaTeX, 9 figure
    • …
    corecore